Disruptive Innovations and their applications in Supply Chain Management – by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Procurement and supply chain are at the cusp of a disruption with AI, IoT and blockchain technology. A digital transformation is ensuing with the promise of greater efficiency in business processes, operations, transparency and security.

Spend analysis

Spend analysis used in strategic sourcing, needs a shift from the traditional descriptive analytics model to more predictive and prescriptive analytics. Organizations can develop tools to enhance their spend analysis with public domain data — from social media, weather data, demographics, suppliers, competition and logistics to name a few — to help uncover insights that can save money and improve supply chain.

 

Supplier lifecycle management

The traditional supplier lifecycle management platform, when augmented by big data from the public domain, can offer meaningful information on suppliers and supply chain risks. An IoT solution can be employed to track the quality of the product at various stages of the supply chain thus improving the efficiency in the process and providing the metrics for supplier evaluation.

 

Strategic sourcing

Supplier bids are collected using online sourcing events, but a large part of the sourcing evaluation and award process is manual in nature. Using blockchain for through all steps of the process — proposals, quotes and bids — or auction, can offer greater efficiency and transparency.

 

Contract management

A blockchain platform and its smart contract framework coupled with IoT and AI, can help facilitate greater efficiency in compliance and obligation management. AI can help develop smart wizards to build contracts based on responses to specific questions and can further be enabled for pattern recognition to identify changes to standard clauses or introduction of non-standard clauses.

Order management

The traditional order management system is internal to any organization and facilitates the fulfillment process. Blockchain platform powered with AI and IoT can drive greater efficiency in orchestrating and streamlining purchase orders, shipment details, trade documents, goods receipts, quality assurance documents, returns and accounting.

Logistics

The logistics industry is an early adopter of AI, IoT and Blockchain, and is already reaping great business benefits. IoT in the logistics ecosystem can provide great insights on inventory management, shelf life, storage temperature, delivery routes, real-time tracking of freight and more

 

Reference:

https://www.ibm.com/blogs/blockchain/2018/04/digital-transformation-next-gen-procurement-and-supply-chain/

 

Questions:

  1. How are AI, IOT and blockchain transforming the logistics industry?
  2. How is blockchain helping in order management?
  3. How can AI help in contract management ?

IOT Increasing Operational Efficiencies – by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Indeed, the IoT is set to revolutionize the supply chain with both operational efficiencies and revenue opportunities made possible with just this type of transparency. In today’s market, supply chain isn’t just a way to keep track of your product. It’s a way to gain an edge on your competitors and even build your own brand. The following are a few areas of operations where we’ll be seeing the most advancement and change with the ever-advancing Industrial IoT.

Operational Efficiencies

When it comes to operational efficiencies, the IoT offers:

  • Asset Tracking: Tracking numbers and bar codes used to be the standard method for managing goods throughout the supply chain. But with the IoT, those methods are no longer the most expedient. New RFID and GPS sensors can track products “from floor to store”—and even beyond. At any point in time, manufacturers can use these sensors to gain granular data like the temperature at which an item was stored, how long it spent in cargo, and even how long it took to fly off the shelf. The type of data gained from the IoT can help companies get a tighter grip on quality control, on-time deliveries, and product forecasting. Not too shabby.
  • Vendor Relations: The data obtained through asset tracking is also important because it allows companies to tweak their own production schedules, as well as recognize sub-par vendor relationships that may be costing them money. According to IBM up to 65% of the value of a company’s products or services is derived from its suppliers. That’s a huge incentive to pay closer attention to how your vendors are handling the supplies they’re sending you, and how they’re handling your product once it’s made. Higher quality goods mean better relationships with customers—and better customer retention overall.
  • Forecasting and Inventory: Another bonus: IoT sensors can provide far more accurate inventories than humans can manage alone. For instance, Amazon is using WiFi robots to scan QR codes on its products to track and triage its orders. Imagine being able to track your inventory—including the supplies you have in stock for future manufacturing—at the click of a button. You’d never miss a deadline again. And again, all that data can be used to find trends to make manufacturing schedules even more efficient.
  • Connected Fleets: As the supply chain continues to grow—upward and outward—it’s even more imperative to ensure that all your carriers—be it shipping containers, suppliers’ delivery trucks, or your van out for delivery—are connected. Again, the data is the prize. Just like cities are using this data to get to emergencies quicker or clear up traffic issues, manufacturers are using it to get better products to their customers, faster.
  • Scheduled Maintenance: Of course, the IoT can also use smart sensors on its manufacturing floors to manage planned and predictive maintenance and prevent down-time that can cost so much.

 

References:

https://www.forbes.com/sites/danielnewman/2018/01/09/how-iot-will-impact-the-supply-chain/#7128f2f63e37

Questions:

  1. How can IOT increase operational efficiencies?
  2. How does IOT improve forecasting and inventory ?
  3. How can IOT used for asset tracking ?

 

 

 

Introducing Advanced Connectivity with Wi-Fi on the go

Imagine a fully functioning and connected office on the go. Access to multiple entertainment and business applications from within your vehicle is now available as the British car manufacturer, Bentley, announced the offering of the first in-car Wi-Fi system.

All Bentley models in 2019 will be presenting drivers and passengers the ability to connect to the Bentley Advanced Connectivity system using a dedicated app on their smart phone. User friendly applications include the ability to access and edit files, hold video conferences, connect to virtual meetings, and benefit from Bentley Skype for Business.

Behind Bentley Advanced Connectivity

An exclusive contract has given Bentley a head-start in Wi-Fi on the go for at least 12 months. Partnering with internationally recognized communication company, Viasat, the manufacturer produced a multi-channel virtual private network (VPN) capable of supporting up to three mobile network operators. Style and comfort are not compromised with the connectivity system placed inside the vehicle’s boot lid, and the router connected to the on-board DC power supply.

Bentley IoT Security

Multiple layers of security and in place as data transferred with Bentley Advanced Connected is reconsolidated for the end user after being divided and transmitted over three mobile networks. One compromised SIM card would therefore not alarm a security breach as it represents only part of the data package. Furthermore, Active Cyber Defense, a system developed to protect users from data theft and ransomware attacks offers additional layers of support and security. On-the go secure connectivity is being made possible through technology and comfort.

What does the future of driving with Wi-Fi look like?

How does IoT enhance one’s driving experience?

Is data security compromised with on-the-go Wi-Fi?

Sources:

https://www.bentleymotors.com/en/world-of-bentley/the-bentley-story/news/2018-news/bentley-introduces-worlds-first-super-fast-in-car-wifi.html

https://www.iottechnews.com/news/2018/nov/05/bentley-launches-car-wi-fi-system-advanced-connectivity-uninterrupted-mobile-network/

 

 

Caterpillar is Saving Big Money using Big Data and the IoT

In the article IoT And Big Data At Caterpillar: How Predictive Maintenance Saves Millions Of Dollars, the author examines an interesting case of the company Caterpillar saving significant amounts of money using big data and the IoT.  The best part of this case study is that Caterpillar is seeing a very quick ROI on their big data investment, which is not something that can be said for most companies.  As a Caterpillar manager put it, you don’t have to look for a “grand slam” with big data; sometimes you just need multiple smaller applications of big data to experience significant savings.  In this instance, gathering as much data as possible seems to be the best approach, and utilizing experts in the processes and in the data to analyze and understand the insights gleaned helps realize real value.

Caterpillar utilized big data on in its Marine Division, mainly to analyze fuel consumption for its customers as it most affects the bottom line.  Sensors on the ship monitored everything from generators, engines, GPS, refrigeration, and fuel meters, and Caterpillar utilized Pentaho’s data and analytics platform.  Insights gained have been a correlation between fuel meters and amount of power used by the refrigeration containers, and also that running more generators at lower power instead of maxing out a few was more efficient.  The cost savings here added up to $650,000+/year.  Another insight was to the optimization of a ship’s hull cleaning schedule.  Through the collection of data of cleaned and uncleaned ships, the data showed that cleanings should be performed once every 6 months instead of once every two years.  The savings associated with this optimization was $400,000/ship.

In the grand scheme of big data, predictive maintenance analytics seems to be the most powerful tool consistently being used.  With data being generated just about anywhere you could imagine via the IIoT, understanding trends becomes easier and easier.  Interestingly and contrary to previous articles, Caterpillar believes that you can’t collect too much data.  They point out how data storage is very cheap.  In the words of a Caterpillar manager, you can’t see “relationships about relationships” in the data if you don’t collect it.  Although a more is better approach is definitely not what some companies have ascribed to, it seems to be working well for Caterpillar’s marine division as they continue to pull value of out of big data and analytics.

Quick returns on big data investments seems to be rare, so do you think that companies just aren’t utilizing the big data correctly?

Do you believe in the more is better approach with regard to collecting data?

Do you believe Caterpillar is more likely to invest in big data projects in other parts of their company due to the success in the marine division?

http://www.forbes.com/sites/bernardmarr/2017/02/07/iot-and-big-data-at-caterpillar-how-predictive-maintenance-saves-millions-of-dollars/#3e01059a5a63

IoT- Predictions for 2017

In this post we will try to foresee what is in store for IoT in 2017.

IoT Will Impact the Omnichannel– The convergence of digital and physical worlds across multiple channels has dramatically changed how businesses reach and manage customer relationships. This results in a transformation of marketing.

“Things” Grow Up and Get Smarter– The average amount of computing power is growing and things are getting smarter and more connected.

Data Collection Migrates to the Cloud– Next year, data collection will move to the cloud. One of the big purposes will be to use AI algorithms to recognize not only someone’s speech but also how to optimize the operations of a machine.

Companies Will Develop More Sensical IoT Products– In 2017, we will see a growing number of consumer-facing connected products that use connectivity to solve real problems. Winning IoT products will have a service component.

Standards Will Remain Messy– There is nothing close to a shared language, and there are a plethora of competing standards.

Tesla’s Elon Musk recently made waves recently by promising that, by the end of 2017, he’ll have a car ready that can drive from Los Angeles to New York without the need for a human driver.

Source- http://www.ioti.com/iot-trends-and-analysis/11-iot-predictions-2017

Connecting for the Future

In a recent article on the website, Readwrite, the initiative to turn Singapore into a smart nation by 2025, is discussed. With the merging of two government agencies, Singapore has created IMDA to oversee the evolution of the country into a smart, connected nation. IMDA hopes to use IoT, drone technology, virtual reality, connected grids and other new technologies to bring Singapore to the forefront of the globally connected world. Singapore hopes to leverage its flexible economy, non-bureaucratic business environment, and experience with innovation and technology to accomplish these ambitious goals.

Industrial IoT vs Consumer IoT

In this article we will talk about IIoT and clear up certain misconceptions that you may have.

What is IIoT?- The Industrial Internet of Things (IIoT) is simply, the use of Internet of Things (IoT) technologies in manufacturing. It incorporates machine learning and big data technology, harnessing the sensor data, machine-to-machine (M2M) communication and automation technologies.

Misconception: The IIoT is the same as the consumer Internet of Things (IoT)

The IIoT includes IoTdevices located in industrial settings. This maybe a factory floor, a high-speed train system, a hotel, a municipal lighting system, or within the energy grid itself. The requirements for IIoT are far more stringent than the consumer IoT. There can be no compromises in control, security, reliability in tough environments and it needs to be autonomous with little or no human intervention. These devices are built to withstand the test of time.

Peer to Peer rather than Push-Pull

While consumer IoT is linked to human-perceived comfort, security, and efficiency. The industrial networks have basic operating roles that do not require human intervention. Operations that must happen too quickly, too reliably, from too harsh or remote an environment to make it practical to push-pull data from any kind of centralized Internet server or the cloud. A major goal for the IIoT is to help autonomous communities of devices to operate more effectively, peer to peer, without relying on exchanging data beyond their communities.

The IIoT to IoT link

Individually, industrial devices generate the “small data” that, in the aggregate, combines to become the “big data” used for IoT analytics and intelligent control. IIoT devices that are IP-enabled could retain their ability to operate without human intervention, yet still receive input or provide small-data output via the IoT.

What is the real IIoT opportunity?

The real opportunity of the IIoT is not to pretend that it’s the same as the IoT, but rather to provide industrial device networks with an affordable and easy migration path to IP. This approach will build bridges to the IIoT, so that any given community of devices can achieve its full potential. An example of this is the IzoT platform of devices developed by Echelon.

Source- http://radar.oreilly.com/2014/02/the-industrial-iot-isnt-the-same-as-the-consumer-iot.html