Disruptive Innovations and their applications in Supply Chain Management – by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Procurement and supply chain are at the cusp of a disruption with AI, IoT and blockchain technology. A digital transformation is ensuing with the promise of greater efficiency in business processes, operations, transparency and security.

Spend analysis

Spend analysis used in strategic sourcing, needs a shift from the traditional descriptive analytics model to more predictive and prescriptive analytics. Organizations can develop tools to enhance their spend analysis with public domain data — from social media, weather data, demographics, suppliers, competition and logistics to name a few — to help uncover insights that can save money and improve supply chain.

 

Supplier lifecycle management

The traditional supplier lifecycle management platform, when augmented by big data from the public domain, can offer meaningful information on suppliers and supply chain risks. An IoT solution can be employed to track the quality of the product at various stages of the supply chain thus improving the efficiency in the process and providing the metrics for supplier evaluation.

 

Strategic sourcing

Supplier bids are collected using online sourcing events, but a large part of the sourcing evaluation and award process is manual in nature. Using blockchain for through all steps of the process — proposals, quotes and bids — or auction, can offer greater efficiency and transparency.

 

Contract management

A blockchain platform and its smart contract framework coupled with IoT and AI, can help facilitate greater efficiency in compliance and obligation management. AI can help develop smart wizards to build contracts based on responses to specific questions and can further be enabled for pattern recognition to identify changes to standard clauses or introduction of non-standard clauses.

Order management

The traditional order management system is internal to any organization and facilitates the fulfillment process. Blockchain platform powered with AI and IoT can drive greater efficiency in orchestrating and streamlining purchase orders, shipment details, trade documents, goods receipts, quality assurance documents, returns and accounting.

Logistics

The logistics industry is an early adopter of AI, IoT and Blockchain, and is already reaping great business benefits. IoT in the logistics ecosystem can provide great insights on inventory management, shelf life, storage temperature, delivery routes, real-time tracking of freight and more

 

Reference:

https://www.ibm.com/blogs/blockchain/2018/04/digital-transformation-next-gen-procurement-and-supply-chain/

 

Questions:

  1. How are AI, IOT and blockchain transforming the logistics industry?
  2. How is blockchain helping in order management?
  3. How can AI help in contract management ?

How will manufacturing progress in 2019?

As manufacturers are continuing to run their operations as lean and efficient as possible technology is continuing to drive change industry. Decision Analyst, on behalf of IQMS, conducted a survey of 151 North American Manufacturers about technologies that they are using to transform their operations. Louis Columbus wrote about the results in his article “Ten Manufacturing Technology Predications for 2019” where he summarizes what the key technological advancements will be that transform manufacturing as we enter the New Year.

  1. More attainable lights-out production courtesy of affordable Smart Machines that are able to run unattended for two or more shifts.
  2. Real-time monitoring with Wi-Fi enabled shop floors and IoT enabled smart machines to improve scheduling accuracy, inventory control, plan performance, and greater flexibility in managing production lines.
  3. Greater adoption of analytics and BI to capitalize on data streams and improve capacity through better resource planning and scale their businesses.
  4. Mobile ERP and quality management applications will become mainstream thanks to advances in integration, usability and high-speed cellular networks and help companies improve data accuracy and operational efficiencies and reduce operational delays.
  5. Digitally-driven transformation with a customer focus by utilizing the above to offer short-notice production runs and achieve greater supplier collaboration.
  6. Replace old legacy machines with cheaper smart machines helping small and mid-tier manufacturers pursue new digital business models.
  7. There will be a major shift to fast-tracking of smart, connected products to avoid price wars and premature commoditization so that within two-years at least two –thirds of product portfolios will be connected thanks to IoT and other technological innovations.
  8. Spreading of the security perimeter thanks to a proliferation of IoT endpoints and an increasing amount of threats to operations from new sources.
  9. Utilizing IIoT to increase productivity by helping improve the inconsistent, inflexible legacy data structures form the shop floor to the top floor.
  10. Greater revenue streams from those manufacturers who were early adopters of IoT will widen the gap between those who adopted IoT early and those who did not.

 

Questions:

  1. What will happen to manufacturers who don’t embrace these changes? Will they be able to catch up or will they soon become irrelevant?
  2. What will be the major challenges faced by manufacturers who try to adopt these changes in their operations? How quickly will they see the results from these changes?
  3. Looking beyond 2019, how will the manufacturing space continue to grow as newer technologies come out?

Source: https://www.manufacturing.net/blog/2018/11/ten-manufacturing-technology-predictions-2019

Internet of Things: Transforming the Industry

Its not just limited to smart phones anymore. Smart things have reached the masses. Products with wireless connectivity (from lightbulbs to thermostats to smart speakers) are more present in people’s homes today than not. A report suggests that 79% of U.S. consumers have at least one connected device at home.

But this technology actually has its roots in a world that predates the rise of remote control gadgets: industrial manufacturing.The (Industrial) Internet of Things takes networked sensors and intelligent devices and puts those technologies to use directly on the manufacturing floor, collecting data to drive artificial intelligence and predictive analytics. The IOT is driving an industry that has struggled in recent years due to talent shortages, and this offers hope for the industry’s future. It can transform traditional, linear manufacturing supply chains into dynamic, interconnected systems—a digital supply network (DSN)—that can more readily incorporate ecosystem partners. It is helping to change the way that products are made and delivered, making factories more efficient, ensuring better safety for human operators, and more often than not saving millions of dollars.

One of the greatest benefits of the IoT is how it can exponentially improve operating efficiencies. If a machine goes down, for instance, connected sensors can automatically pinpoint where the issue is occurring and trigger a service request. It can also help a manufacturer predict when a machine will likely breakdown or enter a dangerous operating condition before it ever happens. It is largely proactive in its functioning. It enables predictive maintenance, which limits the equipment downtime and improves safety. The sensors work by analyzing a given machine to tell if it’s working within its normal condition. This process—known as condition monitoring—is time intensive when we humans do it manually. But by using sensors to collect and quickly analyze data points in the cloud, prediction becomes easier.

Beyond saving money and time, the IoT can keep workers safe. If an oil well is about to reach a dangerous pressure condition, for example, operators will be warned well before it explodes. Sensors can even be used to manage and monitor workers’ locations in case of an emergency or evacuation.

Q1) How is IOT changing the status quo in industries?

Q2) How does IOT help in predictive maintenance ?

Q3) How is IOT improving efficiencies in manufacturing ?

source:https://wordpress.com/post/dcmme.wordpress.com/1921