3D Printing Impact on Supply Chain

 

What is 3D printing

 

3D printing, also known as additive manufacturing – AM (the terms 3D printing and additive manufacturing have become interchangeable), is an additive technology used for making three dimensional solid objects up in layers from a digital file without the need for a mould or cutting tool. 3D printing uses a computer aided design (CAD) to translate the design into a three-dimensional object. The design is then sliced into several two dimensional plans, which instruct the 3D printer where to deposit the layers of material. Additive process, of depositing successive thin layers of material upon each other, producing a final three dimensional product

Impact of 3D printing on the Supply Chain

 

The impact of AM technologies on the global setup of supply chains can be very disruptive. The technology has the potential to eliminate the need for both high volume production facilities and low-level assembly workers, thereby drastically reducing supply chain cost. In terms of impact on inventory and logistics, we can print on demand. Meaning we don’t have to have the finished product stacked on shelves or stacked in warehouses anymore. Whenever we need a product, we just make it. And that collapses the supply chain down to its simplest parts, adding new efficiencies to the system. Those efficiencies run the entire supply chain, from the cost of distribution to assembly and carry, all the way to the component itself, all the while reducing scrap, maximising customisation and improving assembly cycle times.

Image result for Metal 3d printers in supply chain

Traditional supply chain vs AM model

 

The supply chain traditional model is founded on traditional constraints of the industry, efficiencies of mass production, the need for low cost, high volume assembly workers, and so on. But 3D printing bypasses those constraints. 3D printing finds its value in the printing of low volume, customer specific items, items that are capable of much greater complexity than is possible through traditional means. This at once eliminates the need for both high volume production facilities and low level assembly workers, thereby cutting out at least half of the supply chain in a single blow. From that point of view, it is no longer financially efficient to send products across the globe when manufacturing can be done almost anywhere at the same cost or lower. The raw materials today are digital files and the machines that make them are wired and connected, faster and more efficient than ever. And that demands a new model of supply chain . With support local sourcing, the 3D printing technology has the potential to tear established global supply chain structures apart and reassembles it as a new, local system. Furthermore, the technology creates a close relationship between design, manufacturing and marketing. The technology could transform the global supply chain to a globally connected, but totally local supply chain

Image result for Metal 3d printers in supply chain

 

Questions:

What is the future of 3d printing?

What are the challenges in using 3 D printing in supply chains?

 

Sources:

https://www.researchgate.net/…/320927657_The_Impact_of_3D_Printing_Technology

https://www.stratasysdirect.com/resources/infographics/3d-printing-impact-supply-chain

 

Manufacturing at the Speed of Light

Manufacturers are always looking for new ways to make their operations more efficient. One innovative new solution to do this might be using light manufacturing techniques. Light manufacturing techniques are useful for very small objects (think microns or nano-meters in length), which makes them excellent for the electronic industry where people are demanding smaller and smaller electrical components. As the demand for smaller electrical components increases, the cost of manufacturing these components also increases as the precision required by existing machines increases. There are two methods currently being used or researched that could make the process of manufacturing electrical components faster and, more importantly, less expensive.

The first technique is called “optoelectronic tweezers”. This method use optical traps (light) to move small objects into place and assemble the component in liquid and then freeze dries the liquid to allow the manufactured component to be removed. According to the article “New Approach Uses Light Instead of Robots to Assemble Electronic Components” this method could reduce the cost and improve the efficiency of making circuit boards and other small electronic devices. One of the benefits of this method is that it allows for massive parallel assembly meaning you could assembly multiple components at the same time, which improves the time it takes to manufacture bulk shipments of components.

The second technique, called “intense pulsed light sintering”, uses high-energy light to fuse nano-materials in a matter of seconds. The benefit compared to using lasers which accomplish the same thing is that the area of effect is nearly 7,000 times greater in the intense pulsed light sintering method than the typical laser method. The other benefit to this method over the existing pulsed light fusion technique is that it does not require as high a temperature to perform. Pulsed light fusion requires temperatures up to 250 degrees Celsius whereas this new method only requires temperatures up to 150 degrees Celsius. According to the article “Faster, cheaper, nano-based manufacturing”, engineers at Rutgers are currently developing this method for use in the manufacturing of thin films.

 

Questions:

  1. When will these methods be available for manufacturers to start implementing into their processes?
  2. What other areas besides circuit boards and thin films could this technology be used in?
  3. How big of a bottom line impact could this technology have for manufacturers making these electronic components?

 

Source: https://www.osa.org/en-us/about_osa/newsroom/news_releases/2017/new_approach_uses_light_instead_of_robots_to_assem/

Source: https://www.sciencedaily.com/releases/2018/02/180214093836.htm

Kroger Robot centers coming soon

by Maria Hartas, DCMME Center Graduate Assistant

Kroger Co., the largest U.S. grocery retailer, in partnership with Ocado, a dedicated online grocery retailer, will be opening two high-tech customer fulfillment centers (CFCs) in the Central Florida and Mid-Atlantic regions. The facilities will be equipped with digital and robotic capabilities following Kroger’s first CFC, also known as a “shed”, which will be operating in Monroe, OH.

Kroger and Ocado are changing the retail-service industry by leveraging robotics technology in response to growing e-commerce purchasing habits. AI-enabled robots capable of quickly fulfilling high volume orders will efficiently supply click-and-collect orders, presumably in a more accurate, timely, and cot efficient assembly process.

With a commitment to build 20 CDCs, powered by Ocado, Kroger plans to advance the company’s ability to provide customers with anything, anytime and anywhere through the applications of AI and robotic technologies.

Can robots go grocery shopping?

How does AI advance e-commerce?

What is driving retail-service industry wide changes?

Sources:

https://www.supplychaindive.com/news/kroger-announces-2-more-ocado-sites/548712/

https://www.prnewswire.com/news-releases/kroger-and-ocado-announce-two-additional-sites-for-high-tech-customer-fulfillment-centers-300797898.html

Disruptive Innovations and their applications in Supply Chain Management – by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Procurement and supply chain are at the cusp of a disruption with AI, IoT and blockchain technology. A digital transformation is ensuing with the promise of greater efficiency in business processes, operations, transparency and security.

Spend analysis

Spend analysis used in strategic sourcing, needs a shift from the traditional descriptive analytics model to more predictive and prescriptive analytics. Organizations can develop tools to enhance their spend analysis with public domain data — from social media, weather data, demographics, suppliers, competition and logistics to name a few — to help uncover insights that can save money and improve supply chain.

 

Supplier lifecycle management

The traditional supplier lifecycle management platform, when augmented by big data from the public domain, can offer meaningful information on suppliers and supply chain risks. An IoT solution can be employed to track the quality of the product at various stages of the supply chain thus improving the efficiency in the process and providing the metrics for supplier evaluation.

 

Strategic sourcing

Supplier bids are collected using online sourcing events, but a large part of the sourcing evaluation and award process is manual in nature. Using blockchain for through all steps of the process — proposals, quotes and bids — or auction, can offer greater efficiency and transparency.

 

Contract management

A blockchain platform and its smart contract framework coupled with IoT and AI, can help facilitate greater efficiency in compliance and obligation management. AI can help develop smart wizards to build contracts based on responses to specific questions and can further be enabled for pattern recognition to identify changes to standard clauses or introduction of non-standard clauses.

Order management

The traditional order management system is internal to any organization and facilitates the fulfillment process. Blockchain platform powered with AI and IoT can drive greater efficiency in orchestrating and streamlining purchase orders, shipment details, trade documents, goods receipts, quality assurance documents, returns and accounting.

Logistics

The logistics industry is an early adopter of AI, IoT and Blockchain, and is already reaping great business benefits. IoT in the logistics ecosystem can provide great insights on inventory management, shelf life, storage temperature, delivery routes, real-time tracking of freight and more

 

Reference:

https://www.ibm.com/blogs/blockchain/2018/04/digital-transformation-next-gen-procurement-and-supply-chain/

 

Questions:

  1. How are AI, IOT and blockchain transforming the logistics industry?
  2. How is blockchain helping in order management?
  3. How can AI help in contract management ?

3D printing to support additive manufacturing

3D printing of functional parts might be a solution for creating, integrating and validating custom engineered material for additive manufacturing, as announced by the manufacturing services provider, Jabil.

Recognized in the industry for the company’s contribution in materials science innovations, Jabil is advancing the additive manufacturing market. 3D printing challenges include part quality and materials, as well as longer than desired processing times for custom materials; Jabil is addressing the latter by offering 3D printed materials in weeks – not months.

An integrated MPM solution matching part performance with application requirements will enable the company to evaluate, qualify and validate materials alongside certified machines and processes. Reducing processing times and cost to produce parts could transform additive manufacturing applications in a variety of industries, such as aerospace, automotive, industrial and healthcare.

Providing complete 3DP solutions from a new Material Innovation Centre in Minnesota, coupled with customer consultation from additive manufacturing engineers, chemists, materials scientists and production experts, Jabil would be providing 3D solutions from the prototyping to production of engineered materials faster than ever before.  Questions:

Is 3D printing a solution in additive manufacturing?  

Which industries can benefit from 3D printing applications?

How is Jabil reducing 3D printing processing times? S

https://www.manufacturingglobal.com/lean-manufacturing/jabil-launches-complete-solution-support-additive-manufacturing

IOT Increasing Operational Efficiencies – by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Indeed, the IoT is set to revolutionize the supply chain with both operational efficiencies and revenue opportunities made possible with just this type of transparency. In today’s market, supply chain isn’t just a way to keep track of your product. It’s a way to gain an edge on your competitors and even build your own brand. The following are a few areas of operations where we’ll be seeing the most advancement and change with the ever-advancing Industrial IoT.

Operational Efficiencies

When it comes to operational efficiencies, the IoT offers:

  • Asset Tracking: Tracking numbers and bar codes used to be the standard method for managing goods throughout the supply chain. But with the IoT, those methods are no longer the most expedient. New RFID and GPS sensors can track products “from floor to store”—and even beyond. At any point in time, manufacturers can use these sensors to gain granular data like the temperature at which an item was stored, how long it spent in cargo, and even how long it took to fly off the shelf. The type of data gained from the IoT can help companies get a tighter grip on quality control, on-time deliveries, and product forecasting. Not too shabby.
  • Vendor Relations: The data obtained through asset tracking is also important because it allows companies to tweak their own production schedules, as well as recognize sub-par vendor relationships that may be costing them money. According to IBM up to 65% of the value of a company’s products or services is derived from its suppliers. That’s a huge incentive to pay closer attention to how your vendors are handling the supplies they’re sending you, and how they’re handling your product once it’s made. Higher quality goods mean better relationships with customers—and better customer retention overall.
  • Forecasting and Inventory: Another bonus: IoT sensors can provide far more accurate inventories than humans can manage alone. For instance, Amazon is using WiFi robots to scan QR codes on its products to track and triage its orders. Imagine being able to track your inventory—including the supplies you have in stock for future manufacturing—at the click of a button. You’d never miss a deadline again. And again, all that data can be used to find trends to make manufacturing schedules even more efficient.
  • Connected Fleets: As the supply chain continues to grow—upward and outward—it’s even more imperative to ensure that all your carriers—be it shipping containers, suppliers’ delivery trucks, or your van out for delivery—are connected. Again, the data is the prize. Just like cities are using this data to get to emergencies quicker or clear up traffic issues, manufacturers are using it to get better products to their customers, faster.
  • Scheduled Maintenance: Of course, the IoT can also use smart sensors on its manufacturing floors to manage planned and predictive maintenance and prevent down-time that can cost so much.

 

References:

https://www.forbes.com/sites/danielnewman/2018/01/09/how-iot-will-impact-the-supply-chain/#7128f2f63e37

Questions:

  1. How can IOT increase operational efficiencies?
  2. How does IOT improve forecasting and inventory ?
  3. How can IOT used for asset tracking ?

 

 

 

How Analytics is Transforming Supply Chain Management

 

 

Supply chain management is a field where Big Data and analytics have obvious applications. Until recently, however, businesses have been less quick to implement big data analytics in supply chain management than in other areas of operation such as marketing or manufacturing.

Of course supply chains have for a long time now been driven by statistics and quantifiable performance indicators. But the sort of analytics which are really revolutionising industry today – real time analytics of huge, rapidly growing and very messy unstructured datasets – were largely absent.

This was clearly a situation that couldn’t last. Many factors can clearly impact on supply chain management – from weather to the condition of vehicles and machinery, and so recently executives in the field have thought long and hard about how this could be harnessed to drive efficiencies

Image result for supply chain analytics

 

Why is it so Important?

Relying on traditional supply chain execution systems is becoming increasingly more difficult, with a mix of global operating systems, pricing pressures and ever increasing customer expectations. There are also recent economic impacts such as rising fuel costs, the global recession, supplier bases that have shrunk or moved off-shore, as well as increased competition from low-cost outsourcers. All of these challenges potentially create waste in your supply chain. That’s where data analytics comes in.

Data analytics is the science of examining raw data to help draw conclusions about information. It is used in many industries to allow companies and organization to make better business decisions and in the sciences to verify (or disprove) existing models or theories.

All businesses with a supply chain devote a fair amount of time to making sure it adds value, but these new advanced analytic tools and disciplines make it possible to dig deeper into supply chain data in search of savings and efficiencies.

The supply chain is a great place to use analytic tools to look for a competitive advantage, because of its complexity and also because of the prominent role supply chain plays in a company’s cost structure and profitability. Supply chains can appear simple compared to other parts of a business, even though they are not. If we keep an open mind, we can always do better by digging deeper into data as well as by thinking about a predictive instead of reactive view of the data.

 

https://www.industryweek.com/blog/supply-chain-analytics-what-it-and-why-it-so-important

https://www.forbes.com/sites/bernardmarr/2016/04/22/how-big-data-and-analytics-are-transforming-supply-chain-management/#3a01760339ad

Questions

  1. Q) What are the applications of analytics in supply chain?
  2. Q) What are some of the pain points in supply chain addressed by analytics