How robots are changing Supply Chains by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

One business area ripe for business process disruption enabled by robotics is supply chain execution, especially in order fulfillment processes in the warehouse. These processes typically involve a high degree of human involvement as well as a tremendous amount of movement throughout a facility. Now, it’s not as if robotics have been absent from these areas in the past; there are use case examples, but none at a large scale across supply execution. Those organizations that have introduced robots into their warehousing and fulfillment operations have delivered added value including productivity improvements, efficiency gains, the capability to better scale up/down with demand spikes and the ability to improve customer service levels.

The most familiar example of robotics in the fulfillment process is at Amazon. Thee-commerce giant acquired Kiva Systems (now known as Amazon Robotics) in 2012 for $775 million. Since then, Amazon has continuously expanded their use to upwards of 80,000 robots across 25 distribution centers. Through their deployment, Amazon has been able to accelerate delivery times and reduce fulfillment related costs. According to a note published by Deutsche Bank, the deployment of the robots equates to a roughly $22 million per year savings in facilities where they are in use, or an estimated 20% reduction to operating costs. If Deutsche Bank’s estimates are close, Amazon has proven that there is tremendous value to be gained through the use of robotics within the fulfillment center.

For some, a Kiva-type model will work quite well. These utilize fast-moving robots that shuttle entire racks of inventory from a segregated section of the fulfillment center to a picking station, where a picker selects the inventory needed to fill an order. After a pick, a robot returns the rack to back to the floor and moves on to the next pick. A rack-to-person model is best suited to high throughput facilities where speed is the most important element. The benefits include the ability to rapidly move product to picking locations and accelerate fulfillment cycles. However, the rack-to-person model also has its drawbacks. For example, it requires some facility modification to create a segregated area where the robots can safely operate and it requires a guidance mechanism to ensure that the robots operate within the appropriate spaces. These systems are not necessarily collaborative because humans aren’t allowed to work in the same aisles where the robots are operating.  One final drawback is that with these models, half of the movement is spent returning racks after a pick, essentially retaining 50% of the wasted movement in the process.

References:

Santagate, J., & Santagate, J. (2018, January 25). NextGen Supply Chain: The Robots are Here. Retrieved from https://www.scmr.com/article/nextgen_supply_chain_the_robots_are_here

Questions:

  1. How are robots disrupting supply chains?
  2. How are robots increasing operating efficiencies?
  3. How are robots helping in warehousing and fulfillment operations?

 

 

Disruptive Innovations and their applications in Supply Chain Management – by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Procurement and supply chain are at the cusp of a disruption with AI, IoT and blockchain technology. A digital transformation is ensuing with the promise of greater efficiency in business processes, operations, transparency and security.

Spend analysis

Spend analysis used in strategic sourcing, needs a shift from the traditional descriptive analytics model to more predictive and prescriptive analytics. Organizations can develop tools to enhance their spend analysis with public domain data — from social media, weather data, demographics, suppliers, competition and logistics to name a few — to help uncover insights that can save money and improve supply chain.

 

Supplier lifecycle management

The traditional supplier lifecycle management platform, when augmented by big data from the public domain, can offer meaningful information on suppliers and supply chain risks. An IoT solution can be employed to track the quality of the product at various stages of the supply chain thus improving the efficiency in the process and providing the metrics for supplier evaluation.

 

Strategic sourcing

Supplier bids are collected using online sourcing events, but a large part of the sourcing evaluation and award process is manual in nature. Using blockchain for through all steps of the process — proposals, quotes and bids — or auction, can offer greater efficiency and transparency.

 

Contract management

A blockchain platform and its smart contract framework coupled with IoT and AI, can help facilitate greater efficiency in compliance and obligation management. AI can help develop smart wizards to build contracts based on responses to specific questions and can further be enabled for pattern recognition to identify changes to standard clauses or introduction of non-standard clauses.

Order management

The traditional order management system is internal to any organization and facilitates the fulfillment process. Blockchain platform powered with AI and IoT can drive greater efficiency in orchestrating and streamlining purchase orders, shipment details, trade documents, goods receipts, quality assurance documents, returns and accounting.

Logistics

The logistics industry is an early adopter of AI, IoT and Blockchain, and is already reaping great business benefits. IoT in the logistics ecosystem can provide great insights on inventory management, shelf life, storage temperature, delivery routes, real-time tracking of freight and more

 

Reference:

https://www.ibm.com/blogs/blockchain/2018/04/digital-transformation-next-gen-procurement-and-supply-chain/

 

Questions:

  1. How are AI, IOT and blockchain transforming the logistics industry?
  2. How is blockchain helping in order management?
  3. How can AI help in contract management ?

IOT Increasing Operational Efficiencies – by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Indeed, the IoT is set to revolutionize the supply chain with both operational efficiencies and revenue opportunities made possible with just this type of transparency. In today’s market, supply chain isn’t just a way to keep track of your product. It’s a way to gain an edge on your competitors and even build your own brand. The following are a few areas of operations where we’ll be seeing the most advancement and change with the ever-advancing Industrial IoT.

Operational Efficiencies

When it comes to operational efficiencies, the IoT offers:

  • Asset Tracking: Tracking numbers and bar codes used to be the standard method for managing goods throughout the supply chain. But with the IoT, those methods are no longer the most expedient. New RFID and GPS sensors can track products “from floor to store”—and even beyond. At any point in time, manufacturers can use these sensors to gain granular data like the temperature at which an item was stored, how long it spent in cargo, and even how long it took to fly off the shelf. The type of data gained from the IoT can help companies get a tighter grip on quality control, on-time deliveries, and product forecasting. Not too shabby.
  • Vendor Relations: The data obtained through asset tracking is also important because it allows companies to tweak their own production schedules, as well as recognize sub-par vendor relationships that may be costing them money. According to IBM up to 65% of the value of a company’s products or services is derived from its suppliers. That’s a huge incentive to pay closer attention to how your vendors are handling the supplies they’re sending you, and how they’re handling your product once it’s made. Higher quality goods mean better relationships with customers—and better customer retention overall.
  • Forecasting and Inventory: Another bonus: IoT sensors can provide far more accurate inventories than humans can manage alone. For instance, Amazon is using WiFi robots to scan QR codes on its products to track and triage its orders. Imagine being able to track your inventory—including the supplies you have in stock for future manufacturing—at the click of a button. You’d never miss a deadline again. And again, all that data can be used to find trends to make manufacturing schedules even more efficient.
  • Connected Fleets: As the supply chain continues to grow—upward and outward—it’s even more imperative to ensure that all your carriers—be it shipping containers, suppliers’ delivery trucks, or your van out for delivery—are connected. Again, the data is the prize. Just like cities are using this data to get to emergencies quicker or clear up traffic issues, manufacturers are using it to get better products to their customers, faster.
  • Scheduled Maintenance: Of course, the IoT can also use smart sensors on its manufacturing floors to manage planned and predictive maintenance and prevent down-time that can cost so much.

 

References:

https://www.forbes.com/sites/danielnewman/2018/01/09/how-iot-will-impact-the-supply-chain/#7128f2f63e37

Questions:

  1. How can IOT increase operational efficiencies?
  2. How does IOT improve forecasting and inventory ?
  3. How can IOT used for asset tracking ?

 

 

 

Autonomous robots and drones – Streamlining Supply Chains by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Five examples of how autonomous robots and drones can work to streamline the supply chain and make it more efficient :-

  1. Perform product development tasks: When autonomous robots are set up to perform continuous, repetitive tasks, product development, and prototyping activities can benefit from around-the-clock testing for fatigue, damage tolerance, and quality. This frees up product development professionals to work on more important tasks.
  2. Enable better inventory management and easier cycle counting: When handled by aerial robots, these tasks produce more accurate supply-demand reconciliation and replenishment needs, ultimately reducing on-hand inventory.
  3. Enhance warehouse operations: Autonomous Drones can be used in various warehouse operations, from inbound logistics in time-critical situations; carrying materials from storage to the factory; transporting directly from receiving to shipping; or efficiently scanning inventory and significantly reducing labor costs.
  4. Improve accuracy on mundane tasks: Robotic process automation in standard sourcing processes can reduce effort and time requirements and improve the accuracy of mundane tasks.
  5. Reduce cross-docking times and speed up shipment deliveries: Autonomous vehicles with self-guiding abilities can reduce cross-docking times and improve accuracy and rates of picking, packing, sorting, and labeling of items. This, in turn, increases perfect order rates and potentially drives higher customer satisfaction levels.

References: https://www.supplychain247.com/article/5_ways_to_streamline_supply_chain_logistics_operations_with_robots_drones/Drones

Questions:

  1. How is robotic process automation reducing effort and time requirements of mundane tasks ?
  2. How are robots enabling better inventory management ?
  3.  How do autonomous drones enhance warehouse operations ?

How to Survive the Overwhelming Tide of Data

With the increase in accessibility to production and quality data from the use of automation, the Internet of Things, and handheld devices manufacturers are finally able to gather and analyze data to improve their processes at a level hereto unseen before. However, with this seemingly limitless access data comes a new problem: having too much data. More and more companies are falling into the trap of collecting data for the sake of collecting data just because they can and this can actually be harmful to a business. As Douglas Fair states in his article “Drowning in Quality Data: How to Rise Above”, “the insight gleaned from data that is what actually benefits the business”. This means that along with optimizing their processes and machines on the manufacturing floor, manufacturers now also have to think about optimizing how they collect their data so that they are getting the most benefit from it.

When optimization the data collection process, it is important to ask these five simple questions when assessing whether or not they need to be collecting certain pieces of data.

  1. Why do we need to gather this data? What is the improvement we are trying to make with this data we are collecting?
  2. How will we use the data after collection? What are we going to do with it after we have collated it?
  3. Who will evaluate the data? Will it be automated or will we be dedicating personnel to it? Do we have the labor available right now to handle it?
  4. What is a reasonable amount of data to collect? Can we defend why we need as much as we do or could we do the same thing with less?
  5. How frequently do we need to collect the data? How often are we analyzing and using the data to make decisions? Do these coincide with each other well?

At the end of the day, the only sure fire way to make sure you don’t fall into “data gluttony” is to check yourself and ensure that you are collecting data for specific purposes, using all the data you collect, and acting on the insights gained from the data to improve your bottom-line.

 

Source: https://www.manufacturing.net/article/2019/01/drowning-quality-data-how-rise-above

 

Questions:

  1. With data becoming so centric to operations now-a-days, are we going to start seeing roles dedicated to data analysis on site at plants? How will this affect the way plants are run?
  2. What are the costs associated with “data gluttony”? Is it really as big a problem as Fair makes it out to be?
  3. How long does the process of optimizing data collection take? How often should companies review their data collection process to ensure they aren’t collecting useless data?

How will manufacturing progress in 2019?

As manufacturers are continuing to run their operations as lean and efficient as possible technology is continuing to drive change industry. Decision Analyst, on behalf of IQMS, conducted a survey of 151 North American Manufacturers about technologies that they are using to transform their operations. Louis Columbus wrote about the results in his article “Ten Manufacturing Technology Predications for 2019” where he summarizes what the key technological advancements will be that transform manufacturing as we enter the New Year.

  1. More attainable lights-out production courtesy of affordable Smart Machines that are able to run unattended for two or more shifts.
  2. Real-time monitoring with Wi-Fi enabled shop floors and IoT enabled smart machines to improve scheduling accuracy, inventory control, plan performance, and greater flexibility in managing production lines.
  3. Greater adoption of analytics and BI to capitalize on data streams and improve capacity through better resource planning and scale their businesses.
  4. Mobile ERP and quality management applications will become mainstream thanks to advances in integration, usability and high-speed cellular networks and help companies improve data accuracy and operational efficiencies and reduce operational delays.
  5. Digitally-driven transformation with a customer focus by utilizing the above to offer short-notice production runs and achieve greater supplier collaboration.
  6. Replace old legacy machines with cheaper smart machines helping small and mid-tier manufacturers pursue new digital business models.
  7. There will be a major shift to fast-tracking of smart, connected products to avoid price wars and premature commoditization so that within two-years at least two –thirds of product portfolios will be connected thanks to IoT and other technological innovations.
  8. Spreading of the security perimeter thanks to a proliferation of IoT endpoints and an increasing amount of threats to operations from new sources.
  9. Utilizing IIoT to increase productivity by helping improve the inconsistent, inflexible legacy data structures form the shop floor to the top floor.
  10. Greater revenue streams from those manufacturers who were early adopters of IoT will widen the gap between those who adopted IoT early and those who did not.

 

Questions:

  1. What will happen to manufacturers who don’t embrace these changes? Will they be able to catch up or will they soon become irrelevant?
  2. What will be the major challenges faced by manufacturers who try to adopt these changes in their operations? How quickly will they see the results from these changes?
  3. Looking beyond 2019, how will the manufacturing space continue to grow as newer technologies come out?

Source: https://www.manufacturing.net/blog/2018/11/ten-manufacturing-technology-predictions-2019

The Rise of the Smart City

By Andrew Gunder, DCMME Graduate Assistant

Image result for smart cityTechnologies that once seemed like science fiction fantasy years ago are very rapidly changing our urban landscape. The world is set to become more urbanized, and by 2050, more than 60% of the world’s population is expected to live in cities. Ensuring that these cities are better places to live with an adequate quality of life is essential to making them more sustainable and efficient with streamlined services.

Companies such as Intel, Cisco Systems, IBM, Verizon, Silver Spring Networks, GE, Ericsson, and Siemens are among those pioneering and building smart city solutions. The smart city market is projected to be a $400 billion industry by 2020, with more than 600 cities globally expected to contribute to 60% of the world’s GDP by 2025, according to recent McKinsey research.

In our digital age, imagine having the power at your fingertips via an app to gain fast access to traffic information, road conditions, points of interest, and more in a given city. At the end of the day, it is all about efficiency. The idea of using your smart phone to impact things such as traffic management, waste removal, and even snow removal is simply remarkable, and the next step in urban evolution.

 

 

What are some other companies that can contribute smart solutions to cities?

What kinds of technologies can help make a city “smart”?

What are the biggest barriers to bringing about a smart city?

Source: https://www.techrepublic.com/article/smart-cities-the-smart-persons-guide/