Automation in Manufacturing by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Three types of automation in production can be distinguished: (1) fixed automation, (2) programmable automation, and (3) flexible automation.

Fixed automation, also known as “hard automation,” refers to an automated production facility in which the sequence of processing operations is fixed by the equipment configuration. In effect, the programmed commands are contained in the machines in the form of cams, gears, wiring, and other hardware that is not easily changed over from one product style to another. This form of automation is characterized by high initial investment and high production rates. It is therefore suitable for products that are made in large volumes. Examples of fixed automation include machining transfer lines found in the automotive industry, automatic assembly machines, and certain chemical processes.

Programmable automation is a form of automation for producing products in batches. The products are made in batch quantities ranging from several dozen to several thousand units at a time. For each new batch, the production equipment must be reprogrammed and changed over to accommodate the new product style. This reprogramming and changeover take time to accomplish, and there is a period of nonproductive time followed by a production run for each new batch. Production rates in programmable automation are generally lower than in fixed automation, because the equipment is designed to facilitate product changeover rather than for product specialization. A numerical-control machine tool is a good example of programmable automation. The program is coded in computer memory for each different product style, and the machine tool is controlled by the computer program. Industrial robots are another example.

Flexible automation is an extension of programmable automation. The disadvantage with programmable automation is the time required to reprogram and change over the production equipment for each batch of new product. This is lost production time, which is expensive. In flexible automation, the variety of products is sufficiently limited so that the changeover of the equipment can be done very quickly and automatically. The reprogramming of the equipment in flexible automation is done off-line; that is, the programming is accomplished at a computer terminal without using the production equipment itself. Accordingly, there is no need to group identical products into batches; instead, a mixture of different products can be produced one right after another.

References:

(n.d.). Numerical control. Retrieved from https://www.britannica.com/technology/automation/Numerical-control

Questions:

  1. What are the different forms of automation in manufacturing?
  2. How is flexible automation different from programmable automation?
  3. What is are the disadvantages of programmable automation?

 

 

Big Data Technology: Impact on supply chains

Sources

https://www.supplychaindive.com/news/what-Big-Data-supply-chain-application-primer/435865/

https://www.mckinsey.com/business-functions/operations/our-insights/big-data-and-the-supply-chain-the-big-supply-chain-analytics-landscape-part-1

 

What is Big Data

Big Data as a concept requires three distinct layers before application: more data, processing systems, and analytics. If Big Data only recently entered the supply chain management spotlight, then, it may be because the technology only recently reached the last layer to deliver insights.

Information processing

Businesses are no stranger to data; supply chain managers have been producing reports, tracking trends and forecasting for decades. So when data exploded to become Big Data, companies were quick to rise to the challenge of collecting it for future use.

“What the CIOs and IT organizations were asked to do, early part of this decade – probably even the latter half of the last decade – was ‘hey there’s a lot of value in data, let’s actually keep on collecting data,’” Suresh Acharya, Head of JDA Labs told Supply Chain Dive.

But even if a pedometer generates bits and bytes each second, the information created remains unpalatable unless it is stored with previous data to be analyzed over time.

Therein came the need for information processing systems more powerful than spreadsheets.  Many of these are now known by their three letter acronyms (e.g. ERP, CRM, TMS or WMS), but their purpose is similar: to store, collect and simplify information for the average user. Such processors became so ubiquitous, it is now common for a company to boast nine or ten distinct systems supporting supply chain management in a single plant.

Insight and decision-making: The next frontier

There’s a new wave of data processors on the market promising to reap the benefits of Big Data for supply chains.

Supply chain solutions companies often offer to integrate the various systems from the previous generation, allowing companies to visualize data sets at each corporate level for the increased granularity and analytical capacity desired from Big Data.

Yet, Big Data is not only the ability to process more information, but the ability to innovate, automate and use data for enhanced decision-making. The toolkit is meant to be applied, not simply possessed.

A look back at our pedometer example may help illustrate the difference between having a software solution and actively unpacking Big Data. At first, the pedometer could only track information – making it a data generator. If connected to the Cloud and transmitting to a data processor, the device could be considered as helping to generate Big Data. But it was never a Big Data device because it never actively helped a user make decisions.

Meanwhile, the Fitbit – which tracks steps, heart rates and other biometrics – can analyze and apply the data it collects to guide the wearer to better health habits; for example, it alerts the user when they have been sitting too long and reminds them to go take a walk.

 

 

Big Data applications in supply chain

Manufacturing

Big data and analytics can already help improve manufacturing. For example, energy-intensive production runs can be scheduled to take advantage of fluctuating electricity prices. Data on manufacturing parameters, like the forces used in assembly operations or dimensional differences between parts, can be archived and analyzed to support the root-cause analysis of defects, even if they occur years later. Agricultural seed processors and manufacturers analyze the quality of their products with different types of cameras in real-time to get the quality assessments for each individual seed.

The Internet of Things, with its networks of cameras and sensors on millions of devices, may enable other manufacturing opportunities in the future. Ultimately, live information on a machine’s condition could trigger production of a 3D-printed spare part that is then shipped by a drone to the plant to meet an engineer, who may use augmented reality glasses for guidance while replacing the part.

Warehousing

Logistics has traditionally been very cost-focused, and companies have happily invested in technologies that provide competitive advantage. Warehousing in particular has seen many advances using available ERP data. One example are “chaotic” storage approaches that enable the efficient use of warehouse space and minimize travel distances for personnel. Another are high-rack bay warehouses that can automatically reshuffle pallets at night to optimize schedules for the next day. Companies can track the performance of pickers in different picking areas to optimize future staff allocation.

New technologies, data sources and analytical techniques are also creating new opportunities in warehousing. A leading forklift provider is looking into how the forklift truck can act as a big data hub that collects all sorts of data in real time, which can then be blended with ERP and Warehouse Management System (WMS) data to identify additional waste in the warehouse process. For example, the analysis of video images collected by automated guided vehicles, along with sensor inputs including temperature, shelf weight, and the weight on the forklift, can be used to monitor picking accuracy, warehouse productivity and inventory accuracy in real time. Similarly forklift driving behavior and route choices can be assessed and dynamically optimized to drive picking productivity. The data can also be used to conduct root-cause analysis of picking errors by shape, color, or weight, to help to make processes more robust.

New 3D modelling technologies can also help to optimize warehouse design and simulate new configurations of existing warehouse space to further improve storage efficiency and picking productivity. German company Logivations, for example, offers a cloud-based 3D warehouse layout planning and optimization tool.

Transportation

Truck companies already make use of analytics to improve their operations. For example, they use fuel consumption analytics to improve driving efficiency; and they use GPS technologies to reduce waiting times by allocating warehouse bays in real time.

Courier companies have started real-time routing of deliveries to customers based on their truck’s geo-location and traffic data. UPS, for example has spent ten years developing its On-Road Integrated Optimization and Navigation system (Orion) to optimize the 55,000 routes in the network. The company’s CEO David Abney says the new system will save the company $300 million to $400 million a year3.

Big analytics will also enable logistics providers to deliver parcels with fewer delivery attempts, by allowing them to mine their data to predict when a particular customer is more likely to be at home. On a more strategic basis, companies can cut costs and carbon emissions by selecting the right transport modes. A major CPG player is investing in analytics that will help it to understand when goods need be shipped rapidly by truck or when there is time for slower barge or train delivery.

Point of Sale

Brick and mortar retailers—often under heavy pressure from online competitors that have mastered analytics—have understood how data driven optimization can provide them with competitive advantages. These techniques are being used today for activities like shelf-space optimization and mark-down pricing. Advanced analytics can also help retailers decide which products to put in high value locations, like aisle ends, and how long to keep them there. It can also enable them to explore the sales benefits achieved by clustering related products together.

Search engine giant Google has acquired Skybox, a provider of high resolution satellite imagery, that can be used to track cars in the car park in order to anticipate in-store demand. Others have explored the use of drones equipped with cameras to monitor on-shelf inventory levels.

Questions:

Q) What role can Big Data play in the optimization of Supply Chains across industries?

Q) What are the cost implications in companies leveraging big data to organize their supply chains?

Q) How is Big data different from data analytics?

 

 

How disruptive technologies are improving food supply chains by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

One of the lectures in my Logistics class, got my interest in understanding how we as professionals interested in the supply chain industry can do our bit to improve the efficiencies in the food supply chain area and I decided to do some reading on the same. I decided that since it’s the need of the hour, maybe I can share it with others too.

IOT enabling better decisions

Internet of Things (IoT) or sensors can continuously capture large amounts of relevant information, while the decreasing cost of storing data in cloud solutions, and the increased possibilities of analysing these big amounts of data, creates new insights and the basis for better decisions. For example, the sensors can capture data in biological processes, such as aquaculture. Advanced analytics on these data may create new insights and better decisions. They may contribute to improved fish health and fish welfare, reduced mortality rates, improved feed efficiency and a more sustainable seafood production.Moreover, IoT enables the entire food and beverage industry to monitor raw goods and products all the way through the value chain, and use the information to ensure safe and sustainable products at the consumers’ tables.

Use of blockchain

Blockchain and other digital technologies will enable the communication of information from sensors directly to the consumer at the purchasing moment. Digital assurance may contribute to making the story true and trustable and an effective defence against counterfeiting and food fraud.For example, the food service industry may log and blockchain temperature information of products throughout the supply chain, from the ready meal producer to the consumer in the convenience store. In addition to the value of this information to the consumer, this may also contribute to longer shelf lives, improved cooling chain performance and reduced food waste. The flip side of making this information fully transparent to the consumer, is of course that the consumer will also know if the cooling chain was disrupted.

Shorter value chains

Thirdly, the platform economy may disrupt the supply chain and impact the retailers by connecting the consumers more directly to the food producers, as short value chains or direct purchase become consumer values in themselves. The decrease in transaction cost and the growing e-business in the food market, may increase the power of consumers, as a larger variety of products and producers may be made available at a lower cost. In addition to deep customer insight, platforms and social media creates open innovation opportunities, by involving customers directly in product development. Through engagement, sense of belonging and loyalty your customers may increasingly become part of your brand.

Transportation Automation

Transportation planners are on the frontlines of the latest supply chain disruption — and they’re making significant progress in more ways than one. Although many think of autonomous vehicles when it comes to the next generation of transportation, supply chain managers have a myriad of applications for advanced robotics and automated systems:

  • Smart Traffic Management: The city of Nanjing, China recently introduced a traffic flow management system that incorporates real-time data as well as predictive analytics and forecasts to help travelers plan their routes on a day-to-day basis. Such a system is easily extrapolated to the supply chain by providing information on traffic delays, detours and even weather conditions.
  • Enhanced Safety Mechanisms: While some are concerned with the safety issues presented by autonomous and driverless vehicles, others focus on human drivers. New systems can estimate a driver’s fatigue by monitoring various vital signs to help avoid accidents on the road.
  • Aerial Drone Delivery: Remote-controlled aerial drones are already popular among consumers, so it makes sense that they’re being considered for product deliveries and shipments.

 

References:

https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/ConsumerBusiness/2015-Deloitte-Ireland-Food_Value_Chain.pdf

(n.d.). How Are Digital Technologies Transforming Food Value Chains? Retrieved from https://www.mygfsi.com/news-resources/news/news-blog/1330-how-are-digital-technologies-transforming-food-value-chains.html

Nichols, M. R. (2018, April 25). 5 Technologies Disrupting the Supply Chain. Retrieved from https://www.manufacturing.net/article/2018/04/5-technologies-disrupting-supply-chain

Questions:

  1. How is IOT changing the food supply chains as we know it?
  2. How can transportation automation help improve the efficiency of food supply chains?
  3. How will shorter value chains enhance the efficiencies of food supply chains world over?

 

 

3D PRINTING – Eliminating Wastes and Reducing Carbon Footprint by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

The economic advantages of metal additive manufacturing as an alternative to traditional methods are clear, but the reduced environmental impact may be even more important to the future of industry.

Shipping: An Enormous Carbon Footprint

The flow of raw materials into a manufacturing facility and finished goods out of it require enormous energy inputs allocated to shipping. Given that traditional manufacturing has been heavily reliant on fossil fuels since the Industrial Revolution, this process exacts a major toll on the environment. Together, the transportation sector accounts for over 30 percent of all U.S. emissions. Industrial transportation related to shipping undoubtedly comprises a major segment of this total.Complex, disjointed supply chains result in an end-use product that requires inputs to be shipped from hundreds of suppliers. Further, the completed product goes through multiple layers of distribution before it arrives in its buyer’s hands. 3D printing can’t fix all these problems, but it does have the potential to dramatically cut the number of links in the chain by allowing local, on-demand manufacturing of a huge variety of components. Without a doubt, 3D printing will eliminate millions of component shipping journeys in the coming decade.

Traditional Processes Waste Vital Resources

The largest segment of the metal parts fabrication industry is “subtractive” processes like CNC milling, in which material is cut away from a block to produce a final part.This brings us back to the key word, “subtractive.” The problem with this type of manufacturing is that any of the original block of metal that is cut away is waste. That wasted material represents additional resources that must be extracted from the Earth via potentially harmful mining practices.

Even worse, the final outcome for the scrap material itself involves one of two things:

  1. Additional shipping and processing to take advantage of whatever economic value the cast-off still has
  2. A trip to the local landfill, where industrial overcrowding is already a significant issue

Metal 3D printing, when economically viable, provides a nearly perfect solution to this problem. Because it’s an additive process, whereby material is layered onto itself in an exact pattern, there is virtually no waste associated. Only the metal that actually comprises the final component is used. The unused material can be recycled.This could mean the difference between 95% waste with CNC machining and < 1% waste using metal AM.

Toxic Byproducts are Common in Metal Manufacturing

Certain types of metal manufacturing, most notably CNC machining and metal injection molding, require the use of toxic substances as part of their process. The oils and lubricants needed to ensure CNC machines run properly are often dangerous to the environment. The finishing process for these parts can also make use of fluids that can be damaging if handled incorrectly. These must be handled carefully and disposed of properly.Needless to say, “properly” isn’t a standard to which all manufacturers worldwide are held. Some percentage of the harmful agents used in both CNC machining and metal injection molding will make it into the air, water, or soil that supports the community around a plant. It’s hard to quantify this, but the environmental impact is real.Standards for proper disposal of hazardous chemicals associated with conventional metal manufacturing can vary dramatically by world region.

Metal AM eliminates this concern entirely. The process simply doesn’t generate any toxic byproducts, which guarantees that air and water quality won’t be directly harmed.Conventionally made components can leave a much bigger carbon footprint than 3D printed parts.A less obvious environmental cost of traditional manufacturing lies in the efficiency of end-use products. Recent successes in metal 3D printing have changed what’s possible for fuel efficiency in a variety of places. The technology has enabled huge design improvements that shave off weight without compromising strength.

Lessening the Carbon Footprint Through AM-Enabled Design

3D printing allows for the manufacture of parts with complex internal geometries, often in ways that are impossible for conventional techniques to match. The upshot is that design changes that combine multiple parts into a single component can often be completed without sacrificing functionality–or feasibility. This accomplishes the goal of lowering cost and lead times by simplifying the manufacturing process, but it also comes with significant environmental advantages.

Additive Manufacturing Optimizes Designs & Efficiency

As the world marches toward an increasingly tenuous climate future, the costs of a suboptimal part made through traditional manufacturing must be considered right alongside the more tangible impacts described above. There are countless heavy or less-than-aerodynamic components in applications across every sector that could be improved significantly with the design freedom afforded by metal AM. In aggregate, the emissions reductions that are now feasible through projects like GE’s Advanced Turboprop engine would represent major improvement for humanity’s overall carbon footprint. Metal 3D printing doesn’t yet offer all the answers, but in a growing percentage of manufacturing situations, it’s a step in the right direction for our planet.

References:

3DEO. (n.d.). Environmental Impact of Additive Manufacturing. Retrieved from https://news.3deo.co/environmental-impact-of-additive-manufacturing

Questions:

  1. How is 3D printing reducing the carbon footprint?
  2. How is 3D printing reducing wastage?
  3. How is 3D printing optimizing designs and increasing efficiency?

How Augmented Reality is disrupting supply chains. – Abhilasha Satpathy

With over one billion AR enabled smartphones and tablets already in use, companies don’t have to wait for low-cost augmented reality glasses to start reaping the benefits of augmented reality. Here are five ways that AR is transforming the supply chain into a nimble tool for global distribution:

1) Pick-and-Pack Services

Augmented reality is being used in warehouses to more efficiently locate products and pack them in outgoing boxes. One of the costliest parts of running a “pick and pack” service is training new workers to navigate a large warehouse and find the one product they are searching for. AR glasses can paint an imaginary line on the warehouse floor to simplify the searching and training. During the peak holiday season, temporary workers need to be on-boarded quickly. AR shortens the learning curve by providing new hires with constant feedback on their glasses about how they are doing and what can be improved. Field tests of AR pick-and-pack systems have reduced errors by as much as 40%.

2) Collaborative Robotics

Robots are the ultimate human augmentation. Workers sitting comfortably at their desks can wear AR glasses that let them see what a robot in the warehouse sees. AR glasses can now chart the paths of robots through warehouses and use their strength to lift and move heavy cargo. Dangerous or repetitive tasks, such as loading a truck, can be delegated to robots that operate with human guidance when it comes to how to best load the items to achieve the maximum load. Additionally, logistics robots are able to scan each product for damage, check its weight, and abide by any package shipping instructions. By connecting robots with managers, customers can be automatically alerted if any products that aren’t available before the truck even leaves the warehouse.

3) Maintenance

Fixing a problem before it happens is the most cost-effective form of maintenance. With many aircraft engines now transmitting usage data via Wi-Fi when they are on the ground, augmented reality is assisting maintenance crews in reducing engine downtime by comparing engine data with the past history of other similar aircraft with avionics systems. These algorithms then suggest maintenance before a problem is likely to occur. For planes that spend most of their ground time at distant locations, AR can also enable more experienced maintenance teams at the airline’s hub to see what local technicians are dealing with and provide timely live support.

4) Last Mile Delivery

In logistics, the last-mile of delivery to customers is the most expensive. AR can save money by cutting the time spent on last-mile delivery nearly in half. According to a DHL report, drivers spend 40% to 60% of their day searching inside their own truck for the correct boxes to deliver next. Instead of having to remember how their truck was loaded that morning, augmented reality is used to identify, tag, sequence, and locate every parcel. Combined with artificial intelligence, AR glasses can also navigate the driver to the proper door or building gate for delivery. These systems will record each and every delivery so that new drivers will benefit from past driver experiences. In the near future, every driver will be given a graphic overlay of each building they encounter.

5) Procurement

The distributed ledger capability of blockchain is being combined with augmented reality to bring transparency and traceability to procurement. The entire supply chain falls apart when customers can’t be assured of a product’s origin or authenticity. Each year, billions of dollars’ worth of counterfeit pharmaceuticals are distributed to patients, and tens of thousands are dying. Using AR to identify and track each shipment from manufacturer to end user is a way to help solve this deadly problem. Recording each transfer of ownership on a blockchain can also assist in tracing the origin of fish or the source of harvested crops.

Big data drives the decision making behind the world’s distribution of products throughout the supply chain. Augmented reality is now poised to exponentially increase the speed at which data can be analyzed and acted on. The insights augmented reality bring to the supply chain can be used to power the next generation of the supply chain, which will feature autonomous vehicles and delivery drones.

References:

“5 Ways Augmented Reality Is Disrupting the Supply Chain.” Fortune, fortune.com/2018/03/01/5-ways-augmented-reality-is-disrupting-the-supply-chain/.

Questions:

  1. How does augmented reality help in reducing costs in supply chain?
  2. How is blockchain is being combined with augmented reality to bring transparency and traceability to procurement?
  3. How does augmented reality help in last-mile delivery?

UPS drones delivering vaccines

by Maria Hartas, DCMME Graduate Assistant

Imagine last mile delivery of vaccines. UPS, collaborating with Matternet a drone technology company, launched the transport of medical samples using drones to WakeMed’s campus in the Raleigh, North Carolina, area.

Matternet’s M2 quadcopter, a drone that is battery powered and can transport up to five pounds can travel up to 12.5 miles. UPS will be able to fulfill on-demand and same-day delivery orders using Matternet’s technology.

Furthermore, UPS will be sending vaccines to franchised stores, from where contracted nurses by the 3PL’s clinical trial departments will deliver and administer the vaccine to patients.

UPS’s robust package tracking system, starting from shipping label inception to the precise minute of delivery, would open new opportunities for UPS in the medical field.

How can drone technology enhance medical services?

Are there drone-delivery limitations?

How do consumers benefit from delivery innovations?

Sources:

https://www.supplychaindive.com/news/ups-healthcare-drone-delivery-vaccine-last-mile/551421/

How 3D Printing Impacts Logistics and Supply Chains- by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

In recent years, 3D printing has brought manufacturing capabilities to several remote, hard-to-access areas across the globe. DHL, for instance, tells us that the U.S. Navy 3D prints drones on-demand on board its oceangoing vessels. NASA, meanwhile, is working to develop a 3D printer for the International Space Station. Shell is also experimenting with this remote manufacturing method on offshore oil platforms.

Pay-for-use or nonprofit fabrication shops are becoming more popular as well, offering public access to 3D printing tools, and some websites have begun aggregating 3D printing designs, allowing customers to compare and select printing services that work for their specific needs.These initiatives are disrupting the traditional manufacturing supply chain in several ways. In researching warehouse stocking practices in Amsterdam, DiManEx found that approximately 80% of stored products were sold only twice yearly, which led to write-offs, scrapping, and wasted materials. With on-demand, on-site printing, companies can move away from having to store excess spare parts and can instead deliver parts quickly and efficiently, whenever they’re required. Mercedes-Benz Trucks, for instance, allows customers to 3D print more than 30 cargo truck spare parts.

As 3D printing becomes more and more prevalent, expect to see increased supplier consolidation as well. For instance, logistics providers may offer added value by being the ones to process, print, and deliver 3D parts quickly and cheaply. In this way, the typical months-long process of designing, sourcing, and producing component parts can be cut down drastically. In the future, 3D printing warehouses may also take on the responsibility of material sourcing in addition to 3D end-to-end design, production, and delivery. As an example, consider Amazon’s bet on this technology: The company has patented a truck fitted with 3D printers that would allow for sophisticated mobile manufacturing capabilities. Increased responsiveness is also likely, as 3D printers allow for smaller batch sizes, which can positively impact quality control and open the door for expedited product development.

Finally, this kind of technological innovation is likely to bring about advanced customization options, as users will be able to select various aspects of the design, material, shape, size, packaging, and so on. And in gaining the power to make and deliver their own 3D-printed products, customers will no longer be limited to what suppliers themselves design and produce.

 

References:

3D Printing Finds Its Place in the Supply Chain. (n.d.). Retrieved from https://news.thomasnet.com/featured/3d-printing-finds-its-place-in-the-supply-chain/

 

Questions:

  1. How is 3D printing bringing about advanced customization options into supply chains ?
  2. How is 3D printing reducing wastage in supply chains ?
  3. How is 3D printing improving the efficiencies of supply chains ?