Autonomous robots and drones – Streamlining Supply Chains by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

Five examples of how autonomous robots and drones can work to streamline the supply chain and make it more efficient :-

  1. Perform product development tasks: When autonomous robots are set up to perform continuous, repetitive tasks, product development, and prototyping activities can benefit from around-the-clock testing for fatigue, damage tolerance, and quality. This frees up product development professionals to work on more important tasks.
  2. Enable better inventory management and easier cycle counting: When handled by aerial robots, these tasks produce more accurate supply-demand reconciliation and replenishment needs, ultimately reducing on-hand inventory.
  3. Enhance warehouse operations: Autonomous Drones can be used in various warehouse operations, from inbound logistics in time-critical situations; carrying materials from storage to the factory; transporting directly from receiving to shipping; or efficiently scanning inventory and significantly reducing labor costs.
  4. Improve accuracy on mundane tasks: Robotic process automation in standard sourcing processes can reduce effort and time requirements and improve the accuracy of mundane tasks.
  5. Reduce cross-docking times and speed up shipment deliveries: Autonomous vehicles with self-guiding abilities can reduce cross-docking times and improve accuracy and rates of picking, packing, sorting, and labeling of items. This, in turn, increases perfect order rates and potentially drives higher customer satisfaction levels.

References: https://www.supplychain247.com/article/5_ways_to_streamline_supply_chain_logistics_operations_with_robots_drones/Drones

Questions:

  1. How is robotic process automation reducing effort and time requirements of mundane tasks ?
  2. How are robots enabling better inventory management ?
  3.  How do autonomous drones enhance warehouse operations ?

SELF DRIVING VEHICLES-Disruptive Innovations transforming the Future of Supply Chains by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

SELF-DRIVING VEHICLES

News headlines continue to spread the word about self-driving vehicles, often emphasizing the potential for passenger cars to gain mass traction. Supply chain and logistics professionals, however, are considering the ways this new technology could dramatically alter their operations.

Driverless trucks have the potential to reduce labor costs and increase efficiency—after all, a driverless truck can travel straight to its destination without breaks for sleep and food. And self-driving vehicles could also be used to transport items inside warehouses and other facilities.

“Self-driving vehicles unlock new levels of safety, efficiency, and quality within the logistics sector,” Hewitt says. “They will transform the supply chain by autonomously loading and transporting all shapes and sizes of products.”

The ongoing commercial driver shortage appears certain to intensify in the near future, especially if the economy improves. Waggoner cites the possibility of the United States being 175,000 drivers short of demand in a few years. This shortage will likely play a major role in debates over the viability of driverless vehicles.

“The worsening driver shortage will put pressure on pricing and capacity,” he says. “That may not be enough to accelerate their implementation, but driverless trucks could help alleviate the problem.”

No matter the obstacles, supply chain executives see the move to self-driving vehicles as inevitable—a matter of when, not if.

 

References:

https://www.inboundlogistics.com/cms/article/6-technologies-guaranteed-to-disrupt-your-supply-chain/

Questions:

  1. How will the shortage of commercial drivers affect the supply chains?
  2. How will the driverless vehicles affect the logistics?
  3. How will the driverless vehicles enhance safety and efficiency of supply chains?

 

3D PRINTING – Disruptive Innovations transforming the Future of Supply Chains by Abhilasha Satpathy, DCMME Center Graduate Student Assistant

The real breakthrough in the supply chain domain is the arrival of 3D printing as a serious competitor in finished product markets. The technology is slowly gaining acceptance in applications that are “taking it from the prototype to the production-grade stage for smaller components.” The potential changes are many.

Here are a few possibilities.

3PL to Manufacturer 3PL

A new type of 3PL could emerge that offers manufacturing services through 3D printing.  Operators like UPS are well positioned to take on this role because a number of intellectual property issues must be resolved before AM methods become ubiquitous. As a trusted third-party provider, UPS has the market stature and scale to function as a new type of hub where products are made, assembled, and distributed.

A New Breed of Agile Supply Chains

With 3D printers operating as standalone installations in strategic locations, companies could manufacture in short runs at multiple sites across the globe. The networks would flex with shifts in demand by reconfiguring the manufacturing nodes or by adjusting machine outputs. Production units shift rapidly from one product variant to another without the need for retooling or lengthy line delays. The AM model also offers tremendous opportunities to cut inventory costs, because there would be less need for inventory. The management of raw materials inventory also would be streamlined as production processes generate less waste.

Streamlined Maintenance

Armed with 3D printing, machine repair services “don’t have to have every single component; you can print components when needed,” says Ulrich. Positioning parts inventories would become much less of a challenge for teams in the field.

Extreme Just-in-Time

A flexible, highly adaptive network of 3D printing installations could take just-in-time and postponement operations to new levels of efficiency. AM methods could be used to produce precise quantities of customized components very late in the final production cycle when more accurate demand information is available.

New Risk Management Dimensions

Opportunities for improving risk management represent another potential benefit of AM-based manufacturing. Low market-entry barriers and the ability to retool quickly reduce business risk. The technology also provides companies with a rapid-response mechanism when an unforeseen incident disrupts the supply chain.

Green Premium

Since additive fabrication is less wasteful than traditional production processes, it reduces carbon footprints. Similar benefits accrue from innovations such as Oxman’s revolutionary design processes that increase functional efficiency, while reducing material content.

References: https://ctl.mit.edu/sites/ctl.mit.edu/files/library/public/Disruptive_Innovations4_1.pdf

Questions:

  1. How are supply chains changing due to 3D printing?
  2. How does 3D printing help in making the manufacturing industry more green?
  3. How is 3D printing helping in risk management?

 

The Rise of the Smart City

By Andrew Gunder, DCMME Graduate Assistant

Image result for smart cityTechnologies that once seemed like science fiction fantasy years ago are very rapidly changing our urban landscape. The world is set to become more urbanized, and by 2050, more than 60% of the world’s population is expected to live in cities. Ensuring that these cities are better places to live with an adequate quality of life is essential to making them more sustainable and efficient with streamlined services.

Companies such as Intel, Cisco Systems, IBM, Verizon, Silver Spring Networks, GE, Ericsson, and Siemens are among those pioneering and building smart city solutions. The smart city market is projected to be a $400 billion industry by 2020, with more than 600 cities globally expected to contribute to 60% of the world’s GDP by 2025, according to recent McKinsey research.

In our digital age, imagine having the power at your fingertips via an app to gain fast access to traffic information, road conditions, points of interest, and more in a given city. At the end of the day, it is all about efficiency. The idea of using your smart phone to impact things such as traffic management, waste removal, and even snow removal is simply remarkable, and the next step in urban evolution.

 

 

What are some other companies that can contribute smart solutions to cities?

What kinds of technologies can help make a city “smart”?

What are the biggest barriers to bringing about a smart city?

Source: https://www.techrepublic.com/article/smart-cities-the-smart-persons-guide/

 

Internet of Things: Transforming the Industry

Its not just limited to smart phones anymore. Smart things have reached the masses. Products with wireless connectivity (from lightbulbs to thermostats to smart speakers) are more present in people’s homes today than not. A report suggests that 79% of U.S. consumers have at least one connected device at home.

But this technology actually has its roots in a world that predates the rise of remote control gadgets: industrial manufacturing.The (Industrial) Internet of Things takes networked sensors and intelligent devices and puts those technologies to use directly on the manufacturing floor, collecting data to drive artificial intelligence and predictive analytics. The IOT is driving an industry that has struggled in recent years due to talent shortages, and this offers hope for the industry’s future. It can transform traditional, linear manufacturing supply chains into dynamic, interconnected systems—a digital supply network (DSN)—that can more readily incorporate ecosystem partners. It is helping to change the way that products are made and delivered, making factories more efficient, ensuring better safety for human operators, and more often than not saving millions of dollars.

One of the greatest benefits of the IoT is how it can exponentially improve operating efficiencies. If a machine goes down, for instance, connected sensors can automatically pinpoint where the issue is occurring and trigger a service request. It can also help a manufacturer predict when a machine will likely breakdown or enter a dangerous operating condition before it ever happens. It is largely proactive in its functioning. It enables predictive maintenance, which limits the equipment downtime and improves safety. The sensors work by analyzing a given machine to tell if it’s working within its normal condition. This process—known as condition monitoring—is time intensive when we humans do it manually. But by using sensors to collect and quickly analyze data points in the cloud, prediction becomes easier.

Beyond saving money and time, the IoT can keep workers safe. If an oil well is about to reach a dangerous pressure condition, for example, operators will be warned well before it explodes. Sensors can even be used to manage and monitor workers’ locations in case of an emergency or evacuation.

Q1) How is IOT changing the status quo in industries?

Q2) How does IOT help in predictive maintenance ?

Q3) How is IOT improving efficiencies in manufacturing ?

source:https://wordpress.com/post/dcmme.wordpress.com/1921

 

Robots helping small businesses scale craftsmanship

 

http://www.zdnet.com/article/robots-helping-small-businesses-scale-craftsmanship/

Small business owners and entrepreneurs are starting to employ autonomous machines in collaborative and even artistic ways, and that may point to a new chapter of artisanal and small-batch manufacturing in the U.S. this report looks at an example of a TLAC, a 2D and 3D design, print, and publishing shop in Toronto, Canada, that creates books for self-published authors.

 

Advanced Robotic Systems: The Manufacturing Labor Force of Tomorrow

 

http://machinedesign.com/robotics/advanced-robotic-systems-manufacturing-labor-force-tomorrow

The automation industry is seeing a shift in its labor force. As many current workers get ready to retire, a younger workforce has yet to arrive to take its place. In response to this shortfall, the advanced robotic market has grown significantly. Advanced robotic systems and collaborative robots are taking center stage at a time when manufacturing industries need them the most. This is a report based off some findings by the Boston Consulting Group and others.